3. Корректность экономических расчетов при принятии решения о строительстве АЭС в РБ | Зеленый мир

3. Корректность экономических расчетов при принятии решения о строительстве АЭС в РБ

Политическое решение о строительстве АЭС в РБ сопровождалось экономическими расчетами и научными оценками. В соответствии с оценкой сотрудников института энергетических и ядерных исследований Сосны [3], атомный сценарий более дешевый с точки зрения долгосрочных макроэкономических показателей по сравнению с модернизацией газовой генерации на основе ПГУ-технологий. В соответствии с позицией Национальной академии наук [8], АЭС стабилизирует себе-стоимость электроэнергии в энергосистеме РБ на уровне 13 центов за кВт-час вместо прогнозируемых 18-21 центах за кВт-час к 2025-2030 гг. в «газовом» сценарии [8].
Однако в оценках экспертов, обосновывающих выгодность строительства АЭС, присутствует ряд принципиальных неточностей, что требует дополнительных расчетов и перепроверки полученных результатов.

Выбор альтернатив. Как отмечено в [7], за последние 25 лет ни в одной стране мира с рыночной экономикой ни одна частная компания не решилась инве-стировать в атомную энергетику без поддержки государства или без предоставления гарантий покупки произведенной энергии. В России программа поддержки ядерной энергетики предусматривает выделение порядка 1 трлн. рублей (40 млрд. долларов в ценах 2008 г).
Гарантия покупки произведенной энергии означает, что энергокомпании должны будут покупать энергию АЭС, даже в том случае, если она будет дороже энергии других электростанций. Этот факт лучше всего свидетельствует о том, что утверждение о низкой себестоимости ядерной энергии справедливо далеко не всегда.

Сравнение стоимости строительства АЭС и ПГУ-станций. Сравнитель-ная характеристика АЭС и ПГУ-станций является принципиальной при выборе энергетических сценариев. В зависимости от того, какие изначальные капвложения требуются в развитие газовой и атомной генерации зависит экономическая пред-почтительность того или иного сценария.
В предложенном ядерном сценарии стоимость АЭС явно занижена. В соответствии с точкой зрения экспертов института энергетических и ядерных исследований Сосны [3], удельная стоимость ПГУ станций почти равна стоимости капстроительства АЭС 1116 долл./кВт против 1126-1299 долл./кВт для ПГУ-станций. При этом данные для атомной генерации взяты на 2000 год, в то время как стоимость ПГУ-технологий приведена на 2007-2008 гг. и та, скорее всего, завышена с учетом опыта строительства ПГУ-станций в самой Беларуси.
При сравнении использованы технические и экономические характеристики оборудования 30-летней давности. (Шляхин П.Н. Паровые и газовые трубины. М. "Энергия", 1974). За это время характеристики газовых турбин и особенно парогазовых установок совершенствовались более быстрыми темпами по сравнению с "чисто" паровыми, в том числе для атомных энергоблоков. Мировой опыт строительства АЭС показывает, что стоимость строительства атомных энергоблоков в 1,5-2 раза превышает стоимость строительства ПГУ-станции.
Причем тенденции роста стоимости этих двух технологий на примере зарубежного опыта показывают, что этот разрыв увеличивается. Например, в соответствии с докладом Cambridge Energy Research Associates Inc., материалы для строительства АЭС выросли с 2000 г. к началу 2008 года на 173%, в то время как для газовой всего на 92%.

Рост стоимости АЭС в процессе строительства. В процессе строитель-ства стоимость АЭС растет с учетом растущих требований к безопасности АЭС, а также изначально заниженной расчетной стоимости капвложений. В результате в процессе строительства атомного энергоблока, которое занимает 5-7 лет, стоимость атомной генерации, растет значительно. Например, стоимость строительства третьего блока Калининской АЭС превысила расчетную на 110% (см. раздел 4).
Рост стоимости в процессе строительства является принципиальным факто-ром при оценке окупаемости и рентабельности атомных проектов. Так, в проекте второй очереди Балаковской АЭС (2 энергоблока ВВЭР-1000) присутствует анализ чувствительности проекта на увеличение объема капитальных вложений в пром-строительство. Выполненный авторами проекта Балаковской АЭС анализ показал, что проект имеет чистый дисконтированный доход равный нулю при увеличении объема капитальных вложений в промстроительство на 60% [14]. В случае со строительством, например, третьего блока Калининской АЭС превышение составило 110%.

Учет газа, необходимого для увеличения горячего вращающегося резерва. АЭС должна работать в базовом режиме, и не предназначена для регулирования мощности энергосистемы. В таком режиме нет никаких ограничений по скорости сброса нагрузки, однако подъем нагрузки осуществляется очень медленно, ступе-нями с выдержкой по времени на каждой ступени для предотвращения повреждения топлива. Поэтому число разгрузок блоков очень ограничено и предназначено в основном для плановых и аварийных сбросов нагрузки или остановов блоков при повреждении оборудования. По информации НАЭК "Энергоатом", число режимных разгрузок блоков АЭС Украины в течение года колеблется от 0 до 4 – 6.

Рисунок 13 - Нагрузка АЭС Украины в 2004 году в соответствии с фактическими  ремонтами. Источник: сайт госпредприятия Украины "Энергорынок" Рисунок 13 - Нагрузка АЭС Украины в 2004 году в соответствии с фактическими ремонтами. Источник: сайт госпредприятия Украины "Энергорынок"

Сейчас мощность самых больших энергоблоков "Белэнерго" составляет 330 МВт. после ввода в 2010 г. ПГУ-450 на Минской ТЭЦ-5 самая крупная мощность составит 450 МВт. Строительство АЭС с мощностью энергоблоков 1000-1150 МВт потребует создания дополнительного горячего резерва в размере как минимум 550 МВт.
При нахождении оборудования в горячем резерве (с мощностью 50% от номинальной) расход топлива возрастает примерно на 10%. То есть горячий резерв в 1000 МВт потребляет 260 тыс. т у.т. в год. В этой связи в расчет топливного баланса республики необходимо ввести поправку на количество дополнительного газа, необходимого для поддержания резерва для АЭС – примерно 140 тыс. т у.т. в год.

Учет стоимости регулирующих мощностей. Интеграция атомной генерации в объеме примерно 25% от общей установленной электрической мощности при доле в выработке электроэнергии 32% является сложной технологической задачей. В соответствии с [2], это приведет к сложности в прохождении суточных провалов, необходимости сооружения специальных регулирующих мощностей (гидроаккумулирующей станции, аккумуляторов теплоты и т.п.) Стоимость регулирующих мощностей также должна быть учтена в ядерном сценарии.
В такой ситуации на Украине, при оперативном планировании ГП "Энерго-рынок" и НЭК "Укрэнерго" вынуждены предусматривать в течение года ограничение выработки АЭС, даже с минимизацией работы ТЭС ниже минимально-допустимого уровня "живучести" станций.
Как видно из графика на рис. 14, базовая нагрузка в РБ составляет примерно 3 300 МВт. Пиковые нагрузки показывает остроту будущей проблемы суточного и недельного регулирования мощности газовых ТЭС с вводом АЭС – 2000- 2300 МВт.

Рисунок 14 - Типичный недельный график электрической нагрузки ОЭС Беларуси  в отопительный период (2007 г.)Рисунок 14 - Типичный недельный график электрической нагрузки ОЭС Беларуси в отопительный период (2007 г.)

С учетом средней регулировочной возможности блоков конденсационных станций на уровне 0,46 строительство АЭС потребует и строительства гидроакку-мулирующей электростанции (ГАЭС) мощностью не менее 1000 МВт.

Оценка стоимости тарифа АЭС с учетом международного опыта. По данным, приводимым в [8], со ссылкой на Всемирную ядерную ассоциацию, себе-стоимость электроэнергии АЭС во Франции составляет на сегодня 2,54 и 3,93 евроцентов за киловатт-час при норме дисконтирования 5 и 10% соответственно. Од-нако на практике это далеко не так. В 2008 году в связи с ростом стоимости строящегося реактора во Фламанвиле (Франция) на 20% с 3,3 до 4 млрд. евро, ком-пания Areva увеличила прогнозируемую стоимость продаваемой электроэнергии с 4,6 до 5,4 евроцентов за кВт-час, что явно выше заявленных 2,54-3,93 евроцентов за кВт-час.
В отношении стоимости энергии российских АЭС за рубежом следует указать на недавние результаты тендера на строительство АЭС в Турции, где единственным участником тендера оказалась российская компания Атомстройэкспорт. В заявке Атомстройэкспорта цена на отпускаемую электроэнергию с энергоблоков российского дизайна составляла 20,79 центов за киловатт-час. Даже с учетом дис-контной ставки себестоимость при такой отпускаемой цене явно будет превышать пороговую «стабилизирующую себестоимость» в 13 центов за кВт-час. В этой связи экспертному сообществу РБ следует изучить ситуацию вокруг тендера на строительство АЭС в Турции и причины разницы между отпускной ценой АЭС российского дизайна в России и за рубежом.
При этом следует учесть тот неоспоримый факт, что рост тарифа атомных станций внутри России сдерживается в том числе за счет многочисленных субсидий. Недооценка доли субсидирования атомной энергетики в расчетах белорусских экспертов ведет к ошибочным оценкам тарифа АЭС. Среди схем субсидирования российской энергетики необходимо как минимум выделить:

  • прямое бюджетное субсидирование,
  • зарубежная помощь,
  • налоговые льготы.

Ежегодно федеральный бюджет Российской Федерации выделяет атомной энергетике значительные средства в рамках таких программ как «Безопасность атомной промышленности России», «Безопасность атомных электростанций и ис-следовательских ядерных установок», «Безопасность и развитие атомной энергети-ки». Всего в рамках этих программ выделялось до 2,5 млрд. рублей ежегодно (дан-ные на 2004 г.) До 2015 года только на строительство новых АЭС в рамках еще одной программы по развитию ядерного комплекса будет выделено около 700 млрд. рублей бюджетных ассигнований.
Как еще один пример прямого субсидирования можно привести содержание за счет государства воинских частей внутренних войск, обеспечивающих физиче-скую защиту АЭС и объектов ЯТЦ. Оценить объем средств на содержание воин-ских подразделений сложно, но для защиты каждой АЭС требуется примерно одна рота внутренних войск. Для охраны некоторых предприятий ЯТЦ требуется более значительные силы. Например, охрану Горно-химического комбината осуществля-ет полковое подразделение внутренних войск.
В рамках зарубежной безвозмездной помощи Росатом получает или получал помощь в следующих (далеко не всех) международных программах:

  • шведский международный проект;
  • программа ТАSIS Европейской комиссии;
  • международная программа ядерной безопасности США;
  • программа ядерной безопасности Великобритании.

По итогам 2003 г. велась работа по 152 международным проектам общей стоимостью 164 млн. долл. В августе 2003 г. одна только Финляндия выделила «Росэнергоатому» около 300 млн. российских рублей для повышения уровня безопасности Ленинградской АЭС. В 2003 г., правительство ФРГ направило безвозмездные ассигнования в размере до 7,02 млн. евро на реализацию проектов по физической защите ядерных материалов на территории Российской Федерации. По данным Счетной платы, в 1998-2000 гг. в качестве международной помощи на финансирование работ по обращению с РАО от иностранных государств и организаций поступило более 270 млн. долл.
В связи с принятием Закона «Об освобождении от уплаты налога на имущество предприятий, занимающихся хранением радиоактивных материалов и РАО», были приняты поправки к Налоговому кодексу Российской Федерации, в соответствии с которыми организации, занимающиеся хранением радиоактивных материалов и РАО, освобождаются от налога на имущество – 2,2% от стоимости недвижимости. С учетом стоимости имущества действующих хранилищ Росатом может получать скрытые субсидии в виде освобождения от налогов до 2 млрд. руб. еже-годно.
Суммарные субсидии с учетом невыполнения социальных программ, по оценке [16], снижают себестоимость атомной энергии примерно на 30%.
Можно констатировать, что аналогичные схемы субсидирования закладываются и в Беларуси. Например, в соответствии с недавно принятым в РБ законом «Об атомной энергии», предполагается, что «для атомной электростанции или ее блока фонд вывода из эксплуатации формируется за счет средств, полученных от продажи электрической и тепловой энергии и оказания иных услуг, а также за счет иных источников, не противоречащих законодательству». Фактически за-кон открывает путь к использованию бюджетных средств для формирования фонда вывода АЭС из эксплуатации и других статей расходов, характерных исключительно для атомной энергетики.
Оценка роста стоимости уранового топлива. В соответствии с [3], в исследованиях по оптимизации энергосистемы РБ принят рост стоимости топливного цикла на 0,5% в год. Стоимость свежего топлива примерно на треть формируется от стоимости природного урана. С середины 2003 года стабильная до этого цена природного урана резко выросла с 10-12 долларов за фунт до 130 долларов за фунт к 2007 году или более чем в 10 раз (рис. 15). И хотя основной рост пришелся на спотовый рынок урана, тем не менее, контрактные цены также значительно вырос-ли. Вследствие дефицита предложения на рынке природного урана тенденция ус-коренного роста стоимости урана только закрепляется.

Рисунок 15 - Изменение цены необогащенного урана (закись окись, U3O8)  за 20 лет по март 2009, долл. США/фунт Рисунок 15 - Изменение цены необогащенного урана (закись окись, U3O8) за 20 лет по март 2009, долл. США/фунт

Рисунок 16 - Изменение цен на нефть за 20 лет, долл. США за баррель. (Цена на сырую нефть марки Brent при закрытии биржи (по состоянию на июль 1988))Рисунок 16 - Изменение цен на нефть за 20 лет, долл. США за баррель. (Цена на сырую нефть марки Brent при закрытии биржи (по состоянию на июль 1988))

Как видно из графиков на рис. 15, 16, начиная с 2004 г. цена на уран росла вместе с ценой на нефть. Цена на уран стала падать раньше цены на нефть – с августа 2007 г. Но если цена на нефть осенью 2008 г. вернулась на уровень 2005 г, то цена на уран осталась на достаточно высоком уровне – на 30 марта 2009 г. уран стоил 42 доллара за фунт или в 2 раза выше, чем в 2005 г. Таким образом, можно сделать вывод, что урановый рынок отражает объективные тенденции удорожания урана, связанные с ограниченным предложением урана на рынке.
За последние 4-5 лет испытали значительный рост и рынки конверсии и обогащения урана.

Рисунок 17 - Изменение цен услуг по конверсии урана U3O8 в UF6, долл. США за кг UF6  для разных переработчиков Рисунок 17 - Изменение цен услуг по конверсии урана U3O8 в UF6, долл. США за кг UF6 для разных переработчиков

Рисунок 18 - Изменение цен услуг по обогащению урана, долл. США за единицу  разделительных работ  Рисунок 18 - Изменение цен услуг по обогащению урана, долл. США за единицу разделительных работ

Как следует из графика на рис. 17, стоимость конверсии с 2004 года выросла с 7 до примерно 10 долл./кг – более 40% за 5 лет. Стоимость обогащения также переживает скачкообразный рост – со 110 до 160 долл. за единицу разделительных работ (рост с 2005 года примерно на 45%). С 2006 г.
Причем на фоне снижения цен на нефть и природный уран услуги по обогащению урана продолжают дорожать.

Оценка роста стоимости обращения с отработанным ядерным топливом. Говоря о стоимости обращения с отработавшим ядерным топливом, необходимо отметить, что и здесь наблюдается устойчивый рост, превышающий 0,5% в год. Так, в 2009 году Росатом повысил расценки за хранение и переработку ОЯТ с украинских АЭС примерно на 17% с 360 долл. за кг до 423 долл. за кг.
В этой связи можно утверждать, что в ближайшие десятилетия стоимость топливного цикла на всех стадиях будет расти темпами, явно превышающими за-явленные 0,5% в год.

Выбор ставки дисконтирования. В расчетах [3], используется заниженная ставка дисконтирования 5 или 10%. Таким образом, принимается средняя ставка дисконтирования в 7-8%. Это возможно при наличии государственных субсидий (при строительстве в своей стране или льготных экспортных кредитах). Для сравнения средняя процентная ставка по кредитам Всемирного банка составляет 13%.